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Abstract: The dispersion of a quantal oscillator with a 

time-dependent inertial mass is considered. For a special 

class of time dependence, an empirical method is formulated for 

predicting the asymptotic behavior of such a system. This 

method is then applied to the pr iction of charge widths in 

strongly damped nuclear collisions and in fission. 
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In nuclear collisions and in fission the fluctuations in the 

collective coordinate associated with the giant dipole resonance 

(GDR) manifest themselves in the charge dispersion of the 

separating fragments [1~4]. As a neck begins to form between 

the nascent fragments the zero-point energy decreases and the 

period increases for GDR-like ~tion that involves the bulk flow 

of the neutron and proton fluids back and forth against each 

other. This increase in period is associated with the increase 

in the inertial mass caused by the increasingly restricted flow 

between the two halves of the system. When the neck size begins 

to decrease rapidly just prior to separation the collective 

motion is frozen in because it is no longer able to follow the 

change in shape. 

In this note, we examine the expression governing the 

dispersion of an oscillator when the inertial mass changes with 

time. Whether or not the system is able to follow its 

adiabatic time development is found to depend on a critical 

quantity C. This enables us to formulate a simple "adiabati~ 

cityn criterion [4]. For a particular type of time dependence 

(of interest in nuclear processes) the quantity C is then used 

to establish an empirical procedure for determining the freeze 

out properties of a collective coordinate without having to 

resort to numerical solution of the time-dependent Schrodinger 

equation. 

Once this empirical procedure is available we apply it to 

fission. In ref. [5] there are two different shape sequences 



proposed for connecting the saddle and scission points in 

fission. They are di icult to distinguish because they both 

result in the same asymptotic kinetic energy release. Since one 

of these sequences is slow and the other rapid, we had hoped 

that the predicted charge dispersions would differ sufficiently 

to favor one or the other. Unfortunately, the process becomes 

nonadiabatic very close to scission where the time development 

of the two different shape sequences is nearly identical. 

The equation of motion for the width of an oscillator with 

a time -de pendent mass is 

. 
Ub 2 

·~ b . 0 - b 0 + bk a "' ~ 
( 1) 

where 2 2 2 a = <x > - <X> 

The time-dependent quantity b is the inverse of the inertial 

mass assoc ted with the collective coordinate, and k is the 

stiffness of the restoring force. The corresponding Hamiltonian 

The quantity U appearing 

in eq. ( l) is a dynamical invariant whose value is 2 /4 when 

the system starts out in its adiabatic ground state. (For more 

details see ref. [ 6].) 

If a is replaced in eq. (1) by 0 z the following 

expression is obtained: 

( 2) 

This expression has the same form as the equation of motion for 
2 2 

a particle in a time-dependent potential V = l/2(Kz + U/z ) 
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where K = [bk- 3/4(~/b) 2 
+ 1/2(6/b)]. For a static oscillator 

(b = 0) the width (if perturbed) will oscillate about its adia­

batic value o d' b t' = (Ub/k)
114 

with the frequency 2w, a 1a a 1c · 

where w = /bk. is the classical oscillator frequency [7]. 

In the more general case of a time~dependent inertial mass, 

the stability of the width with respect to deviations from the 

adiabatic value depends on the sign of the stiffness K defined 

above. For the cases of interest to us we use this fact to 

construct a dimensionless adiabaticity criterion, which is used 

to establish an empirical scheme for estimating the freeze out 
. 

width from the value of b and b. 

If we divide K by w
2 

and specialize to the case where 6 = 0 

(and change the sign for aesthetic reasons) we obtain the 

quantity 

This quantity can be put to use by first considering some 

idealized situations. 

During the final stages of fission and strongly damped 
. 

nuclear collisions the value of b is nearly constant [1], and 

in fig. 1 we consider four different values (~0.002, ~0.008, 

-0.012 and ~0.020 (MeV dsec 3 ) ~l) that cover the range of 

interest. 
~22 

(1 dsec = 10 sec.) We also set k = 4 MeV which 

is a typ al value. The actual quantity plotted (as a solid 

straight line) in the upper part of the figure is the fourth 

power of r , the adiabatic value of the full width at half 
0 

(3) 
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maximum, which comes from the expression r~ = 30.749(Ub/k). 

(The numerical factor arises from the conversion between r and a 

which is r = 212~n2 a for a gaussian distribution.) 

The dashed lines represent the actual values of r 4 obtained 

from a numerical solution of eq. (1). The width at large 

negative times follows the adiabatic value. As the system 

approaches scission at t = 0 the width is frozen in. The final 
® 

value is larger for larger values of b. 

In the bottom half of the figure the quantity C is plotted 

for the same four cases. The values are all close to -1 for 

large negative times and then pass through zero and rise steeply 

as the system becomes nonadiabatic near the end point. To see 

if the quantity C could be employed in a prescription for 

estimating the freeze out value of r (call it rf) we extended rf 

back in time (see the light lines in the upper part of the 

figure) to the point where ro :::: rf. If we extend this 

critical time (t ) downward to the lower half of the figure c 

we can determine the corresponding critical value of the 

adiabaticity parameter (C ) . The fact that C is nearly c c 

equal to 1.108 for the whole range of interesting cases provides 

us with an empirical scheme for estimating the final width 

without the necessity of solving eq. (1). 

One needs merely to calculate the value of C as a function 

of time. When the value reaches Cc = 1.108 the corresponding 

value of the adiabatic width r provides an excellent estimate 
0 

of what the final freeze out value will be for r. 



This procedure contains no provision for damping of the 

collective motion. In order to obtain an estimate of its 

importance we compared our calculation with a previous result 

that includes damping [1]. 
86 

For the heavy-ion reaction Kr + 
92 

Mo at Elab = 430 MeV and for an impact parameter corre-

spending to an angular momentum of 60 we find that the width 

we calculate for the charge distribution of the projectile like 

fragment is rf = 1.30. The numerically determined value [1}, 

which includes the influence of damping, has the slightly larger 

value of 1. 67. 

The prospect that originally motivated this investigation 

was the hope that the width of the charge distribution in 

fission would provide a key to differentiating between two 

substantially different proposals for the path of a fissioning 

nucleus on its way om saddle to scission. In ref. [ 5] two 

different dynamical paths are determined for fission that both 

give the correct value for the asymptotic kinetic energy 

release. One trajectory is quite rapid and is only weakly 

damped by an ordinary hydrodynamic viscosity. The final velo-

city comes from the relative motion at scission and the Coulomb 

acce ration of the separating fragments. The other trajectory 

is based on the one-body damping mechanism and is much slower. 

The resulting scission shape is more compact and the relative 

motion is slower. However, the increased Coulomb acceleration 

after scission results in a final kinetic energy that is nearly 

the same as for the trajectory based on viscous damping. 



The final width of the fragment charge distributions depends 

on the rate at which the neck between the two nuclei closes off 

at scission. In fig. 2 the inverse mass b (in the change equi-

libration degree of eedom) is plotted as a function of time 

for the two different fission trajectories. (See the appendix 

for details of the calculation.) Since the rate at which b 

decreases is quite different, we expected that the predicted 

charge dispersions would also be quite different. 

Unfortunatly, the freeze-out of the charge dispersion occurs 

so late in the process (see fig. 3) that there is almost no 

difference between the two predictions. In fig. 3 the last part 

of fig. 2 is shown on an expanded scale. In the lower half of 

the figure the quantity C is plotted for the case where the 

fission trajectory was calculated using viscous damping. (The 

calculation of C was based on k = 3.1 MeV.) C attains the cri-

tical value of 1.108 at tc = -1.11 dsec and the corresponding 

inverse mass is be= 0.0338 (MeV dsec
2

) -l. This corresponds to 

a predicted charge dispersion of rf = 1.38 which is somewhat 

smaller than the experimental value of 1.50. The quantity C for 

the case of the trajectory associated with one-body damping is 

not plotted since it lies nearly on top of the curve for 

viscous damping. Since the curves for b are so similar when 

freeze-out occurs, the predicted charge widths are nearly the 

same in the two cases. Consequently, we are forced to conclude 

that these considerations do not provide a means for choosing 

between the two fission trajectories. 
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Appendix 

The inertial mass associated with the hydrodynamical flow 

through a hyperbolic neck connecting the two halves of a 

fissioning nucleus was calculated in the Werner-Wheeler 

approxi rna tion. (See ref. [8].) 

If the neck is described (in the cylindrical coordinates r 

and z) by the expression r 2 = c 2 + s
2

z
2 then the 

inertial mass per particle associated with the flow from -z 2 

to +z 2 is given by the expression 

s ( -1 tan z' 
lTC 

where m is the part le mass, p the particle number density and 

z' = z
2
s/c. If we drop the last two terms in the expression 

(which come om the radial part of the flow field) and combine 

the masses of the neutron and proton flows (for which p % p
0

/2) 

we arrive at the approximate expression for b that was used for 

f i g s . 2 an a 3 , 



2 ~1 {-tan z 1
) 

1T 

Herem* = 0.7m in accordance with earlier findings with regard 

to the GDR in spherical nuclei [9]. The quantity in parenthe-

ses takes the value unity when c (the neck radius) becomes small 

near scission. Consequently the value of b becomes independent 

of z 2 (the limit of integration) and is simply proportional 

to c as one would expect. 
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